C++isrfun-Part 10

at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22

10) Designing and implementing a simple game in C++ May 27-29

11) Selected topics — Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5

12) Working on student projects - June 10-12

Final project presentations Project 3/Final Project Due June 12

Follow up on App Game Kit

Animations
Buttons
Mouse
Play MP3’s!

Game Physics and kinematic motion

Sample Game

- narwhal tries to escape evil eskimo that wants
its tusk

- so it swims so hard that it flies into space!
- that’s level 2
- space level

- so in space it is trying to dodge space trash
- like old soviet satellites ~~ ~ © ~ "
- and impales them with its HORN. . .,

Animations

Cel animation images

OO

L 4

P .

4

; ‘
(6)
2
‘

>

The eight images shown in Figure 8-9 are named walkingManl.png, WalkingMan2.png,
and so forth. Each image is considered a frame in the animation sequence. Program 8-8
loads these images and then displays them one after the other. After the last image is

displayed, the program starts over with the first image.

All materials for the Animations
exercise are in the Google Drive in a
folder called WalkingMan. 8 .png’s and
1 .cpp file.

// This program demonstrates cel animation.

// Includes, namespace and prototypes
#include "template.h"
using namespace AGK;

app App;
// Constants

const int SCREEN_WIDTH = 640;
const int SCREEN_HEIGHT = 480;
const int FIRST_IMAGE = 1;
const int LAST_IMAGE = §;

const int SPRITE_INDEX = 1;
const float FPS = 8;

const int MODE = 0;

// Begin app, called once at the start
void app::Begin(void)

{

// Set the window title.
agk::SetWindowTitle("Cel Animation");

// Set the virtual resolution.

agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);

// Set the frame rate and mode.
agk::SetSyncRate(FPS, MODE);

// Load the walking man images.

agk::Loadlmage(1, "WalkingMan1.png", 1);
agk::Loadlmage(2, "WalkingMan2.png", 1);
agk::Loadlmage(3, "WalkingMan3.png", 1);
agk::Loadlmage(4, "WalkingMan4.png", 1);
agk::Loadlmage(5, "WalkingMan5.png", 1);
agk::Loadlmage(6, "WalkingMan6.png", 1);
agk::Loadlmage(7, "WalkingMan7.png", 1);
agk::Loadlmage(8, "WalkingMan8.png", 1);

// Create the sprite using the first frame of animation.
agk::CreateSprite(SPRITE_INDEX, FIRST_IMAGE);

// Calculate the sprite's position.
flnat cnrite\Width = ack:-GetSnrite\Width(SPRITF INDFY)-

// Calculate the sprite's position.

float spriteWidth = agk::GetSpriteWidth(SPRITE_INDEX);
float spriteHeight = agk::GetSpriteHeight(SPRITE_INDEX);
float spriteX = SCREEN_WIDTH / 2 - spriteWidth / 2;

float spriteY = SCREEN_HEIGHT / 2 - spriteHeight / 2;

// Set the sprite's position.
agk::SetSpritePosition(SPRITE_INDEX, spriteX, spriteY);
}

// Main loop, called every frame

void app::Loop (void)

{

// Get the sprite's image number.

int currentimage = agk::GetSpritelmagelD(SPRITE_INDEX);

// Update the sprite's image number.
if (currentimage == LAST_IMAGE)

{

currentimage = FIRST_IMAGE;

}

else

{

currentimage++;

}

// Set the sprite's image number.
agk::SetSpritelmage(SPRITE_INDEX, currentimage);

// Refresh the screen.
agk::Sync();
}

// Called when the app ends
void app::End (void)

{

}

The Mouse aka el raton

Getting the Mouse Coordinates

You can call the agk::GetRawMouseX and agk: : GetRawMouseY functions to get the cur-

rent coordinates of the mouse pointer. The following code shows an example. Assume
that x and y are float variables.

x = agk::GetRawMouseX();
y = agk::GetRawMouseY();

After this code executes, x will contain the mouse pointer’s X-coordinate, and y will
contain the mouse pointer’s Y-coordinate. Program 8-1 demonstrates how these func-
tions work. The program uses the app::Loop function to continually get the mouse
pointer’s coordinates (lines 32 and 33) and sets the sprite’s position to that location

(line 37). This is shown in Figure 8-1. As the user moves the mouse pointer, the sprite
moves with it.

// This program demonstrates pressing
// the left or right mouse buttons.

// Includes, namespace and prototypes
#include "template.h"

using namespace AGK;

app App;

// Begin app, called once at the start
void app::Begin(void)
{
// Set the window title and the virtual resolution.
agk::SetWindowTitle("Mouse Presses");
agk::SetVirtualResolution(agk::GetDeviceWidth(), agk::GetDeviceHeight());
!
// Main loop, called every frame
void app::Loop (void)
{
// Determine if the left mouse button was pressed.
if(agk::GetRawMouseLeftPressed())
{
// Create a sprite using the "mouse.png" image, and
// set its position to the current mouse coordinates.
agk::SetSpritePosition(agk::CreateSprite("mouse.png"),
agk::GetRawMouseX(),
agk::GetRawMouseY());
}

// Determine if the right mouse button was pressed.
if(agk::GetRawMouseRightPressed())
{
// Create a sprite using the "cat.png" image, and
// set its position to the current mouse coordinates.
agk::SetSpritePosition(agk::CreateSprite("cat.png"),
agk::GetRawMouseX(),
agk::GetRawMouseY());
}

// Refresh the screen.
agk::Sync();
}
// Called when the app ends
void app::End (void)
{

1

Class Exercise:
Mouse.png and
cat.png and
MousePress.cpp
in gDrive folder

Virtual Buttons

‘
8.2 Virtual Buttons
-

—CONCEPT: The AGK allows you to create up to 12 virtual buttons on the screen.
Virtual buttons can be used to determine when the user clicks on them
with the mouse.

Adding a Virtual Button to the Screen

A virtual button is an image of a button that you can display in your AGK program.
The user may click the button with the mouse. You can have up to 12 virtual buttons
in an AGK program. To add a virtual button, call the agk::AddvirtualButton func-
tion. Here is the general format of the function:

agk::AddVirtualButton(Index, X, ¥, Size);

This function accepts four arguments. The first argument, Index, sets the index num-
ber that will be used to identify the virtual button, the value used for the index should
be an integer in the range of 1 through 12. The second argument, x, is a floating-point
value that sets the X-coordinate where the button will appear on the screen and is
based on the center of the virtual button. The third argument, v, is a floating-point
value that sets the Y-coordinate where the button will appear on the screen and is
based on the center of the virtual button. The fourth argument, size, is a floating
point value that sets the diameter of the button. Figure 8-5 illustrates how the size of
the virtual button is determined based on diameter.

5 The size of a virtual button is based on the diameter of a circle

Changing a Virtual Button’s Position on the Screen

If at any time you need to change the position of a virtual button, you can do so by
calling the agk::SetVirtualButtonPosition function and passing the index number
of the virtual button and the new X and Y values as arguments. For example, the fol-
lowing statement positions a virtual button with an index value of 1 centered at the
screen coordinates (120, 120):

agk::SetVirtualButtonPosition(1l, 120, 120);

// This program demonstrates virtual buttons.
// Includes, namespace and prototypes
#include "template.h"

using namespace AGK;

app App;

// Constants

const int SCREEN_WIDTH = 640;
const int SCREEN_HEIGHT = 480;
const int SPRITE_INDEX = 1;

const int SHOW_BUTTON_INDEX = 1;
const int HIDE_BUTTON_INDEX = 2;
const float BUTTON_SIZE = 100.0;

// Begin app, called once at the start
void app::Begin(void)
{
// Set the window title.
agk::SetWindowTitle("Virtual Buttons");

// Set the virtual resolution.
agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);

// Create the sprite.
agk::CreateSprite(SPRITE_INDEX, "frog.png");

// Calculate the position of the sprite.

float spriteWidth = agk::GetSpriteWidth(SPRITE_INDEX);
float spriteX = SCREEN_WIDTH / 2 - spriteWidth / 2;
float spriteY = 0.0;

// Set the position of the sprite.
agk::SetSpritePosition(SPRITE_INDEX, spriteX, spriteY);

// Calculate the position of the virtual "show" button.
float showButtonX = SCREEN_WIDTH / 2 - BUTTON_SIZE;
float showButtonY = SCREEN_HEIGHT - BUTTON_SIZE;

// Calculate the position of the virtual "hide" button.
float hideButtonX = SCREEN_WIDTH / 2 + BUTTON_SIZE;
float hideButtonY = SCREEN_HEIGHT - BUTTON_SIZE;

// Add the virtual buttons.
agk::AddVirtualButton(SHOW_BUTTON_INDEX, showButtonX,
showButtonY. BUTTON SIZF):

// Add the virtual buttons.
agk::AddVirtualButton(SHOW_BUTTON_INDEX, showButtonX,

showButtonY, BUTTON_SIZE);
agk::AddVirtualButton(HIDE_BUTTON_INDEX, hideButtonX,

hideButtonY, BUTTON_SIZE);

// Set the text of the virtual buttons.
agk::SetVirtualButtonText(SHOW_BUTTON_INDEX, "Show");
agk::SetVirtualButtonText(HIDE_BUTTON_INDEX, "Hide");

}

// Main loop, called every frame
void app::Loop (void)
{
// Determine if the virtual "show" button was pressed.
if(agk::GetVirtualButtonPressed(SHOW_BUTTON_INDEX))
{
// Show the sprite.
agk::SetSpriteVisible(SPRITE_INDEX, 1);
}

// Determine if the virtual "hide" button was pressed.
if(agk::GetVirtualButtonPressed(HIDE_BUTTON_INDEX))
{
// Hide the sprite.
agk::SetSpriteVisible(SPRITE_INDEX, 0);
}

// Refresh the screen.
agk::Sync();
}

// Called when the app ends
void app::End (void)

{

}

Music Files

Music files are files thar are saved in the MP3 format. The AGK provides many of the
same operations for music files as sound files. Let’s take a closer look at some of the
things you can do with music files.

Loading a Music File

Before you can use a music file, you have to load it into memory by calling the
agk: :LoadMusic function. Here is the general format of how you call the function:

agk::LoadMusic(MusicNumber, Filename);

MusicNumber is an integer number that you are assigning to the music. This can be an
integer in the range of 1 through 50. You will use the music number to identify the
music when you want to play it or perform other operations with it. Filename is the
name of the music file that you would like to load into the program’s memory. For
example, the following statement loads the file myMusic.mp3 as music number 1.

agk::LoadMusic(1l, "myMusic.mp3");

Playing Music

Once you have loaded a music file into memory, you can play it with the agk: :PlayMusic
function. Only one music file may be played at any one time. Here is the general for-
mat of how you call the function:

agk::PlayMusic(MusicNumber);

MusicNumber is the number of the music that you want to play. For example, the follow-
ing statement plays music number 1:

agk::PlayMusic(1);

Program 8-12 demonstrates playing three different music files when the user clicks on
three different virtual buttons.

// This program demonstrates playing music
// when a virtual button is clicked by the mouse.
// Includes, namespace and prototypes
#include "template.h"

using namespace AGK;

app App;

// Begin app, called once at the start
void app::Begin(void)

{

// Set the window title.
agk::SetWindowTitle("Music Player");

// Set the virtual resolution.
agk::SetVirtualResolution(640, 480);

// Load the music files.
agk::LoadMusic(1, "MusicA.mp3");
agk::LoadMusic(2, "MusicB.mp3");
agk::LoadMusic(3, "MusicC.mp3");

// Add the virtual buttons.
agk::AddVirtualButton(1, 220, 240, 100);
agk::AddVirtualButton(2, 320, 240, 100);
agk::AddVirtualButton(3, 420, 240, 100);
// Set the text for the virtual buttons.
agk::SetVirtualButtonText(1, "1");
agk::SetVirtualButtonText(2, "2");
agk::SetVirtualButtonText(3, "3");

}

// Main loop, called every frame

void app::Loop (void)

{

// If button 1 was pressed, play music 1.
if(agk::GetVirtualButtonPressed(1))

{ agk::PlayMusic(1);

}

// If button 2 was pressed, play music 2.
if(agk::GetVirtualButtonPressed(2))

{ agk::PlayMusic(2); }

// If button 3 was pressed, play music 3.
if(agk::GetVirtualButtonPressed(3))

{ agk::PlayMusic(3); }

// Refresh the screen.

agk::Sync(); }

// Called when the app ends

void app::End (void)

{

}

Simulating Falling Objects

-“CONCEPT: When an object in the real world falls to Earth, its speed increases as
it falls. If you want to write a program that realistically simulates fall-
ing objects, you will need to incorporate this acceleration into your
program.

Game programmers often need to simulate moving objects, and in many cases the
objects must move realistically. For example, suppose you are writing a program that
shows an object falling roward the ground. You could design a loop that merely
moves the object down the screen’s Y-axis the same amount each time the loop iter-
ates. The resulting animation would not be realistic, however, because in the world,
objects do not fall at a steady speed.

moving steadily at 12 meters per second. However, a falling object does not move at
a constant speed. A falling object speeds up as it falls. As a result, a falling object
travels downward an increasingly greater distance each second thar it falls. We can
use the following formula to calculate the distance that a falling object falls:

d= l/zgt2

In this formula, d is the distance, g is 9.8, and ¢ is the number of seconds that the
object has been falling. Going back to the brick example, we can use the formula to
calculate the following distances:

At one second the brick is falling ar a speed of 4.9 meters.

At two seconds the brick is falling at a speed of 19.6 meters.

At three seconds the brick is falling at a speed of 44.1 meters.
At four seconds the brick is falling at a speed of 78.4 meters.
And so forth.

air will slow the brick down a small amount, we can calculate how fast the brick will
be traveling each second as it plummets to the ground:

At one second the brick is falling at a speed of 9.8 meters per second.

At two seconds the brick is falling at a speed of 19.6 meters per second.

At three seconds the brick is falling at a speed of 29.4 meters per second.
At four seconds the brick is falling at a speed of 39.2 meters per second.
And so forth.

This is illustrated in Figure 9-10.

) Speed of a falling brick at various time intervals (not drawn to scale)

/N

Time = 0 seconds
(-

Speed =0

Speed = 9.8 meters per second
Time = 2 seconds
. . . l Speed = 19.6 meters per second
Y
. Time = 3 seconds
Speed = 29.4 meters per second
l . l . '™e=4seconds

Y
Speed = 39.2 meters per second

.

// This program simulates a falling ball.

// Includes, namespace and prototypes
#include "template.h"

using namespace AGK;

app App;

// Global Constants

const int SCREEN_WIDTH = 640;

const int SCREEN_HEIGHT = 480;

const int BALL_IMAGE = 1;

const int BALL_SPRITE = 1;

const float ACCELERATION = 0.98;

// Global variables

float g_time =0;

float g_distance = 0;

// Begin app, called once at the start

void app::Begin(void) {

// Set the virtual resolution.
agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);
// Set the window title.
agk::SetWindowTitle("Free Fall");

// Load the ball image.
agk::Loadlmage(BALL_IMAGE, "ball.png");

// Create the ball sprite.
agk::CreateSprite(BALL_SPRITE, BALL_IMAGE);
// Set the starting position of the ball sprite.
agk::SetSpriteX(BALL_SPRITE, SCREEN_WIDTH / 2 -
agk::GetSpriteWidth(BALL_SPRITE) / 2);

}

// Main loop, called every frame

void app::Loop (void) {

// Get the Y-coordinate of the ball sprite.

float y = agk::GetSpriteY(BALL_SPRITE);

// If the ball is above the bottom of the screen,
// then update its position.

if (y < SCREEN_HEIGHT - agk::GetSpriteHeight(BALL_SPRITE))
{

// Calculate the object's distance using the

// distance formula.

g_distance = 0.5 * ACCELERATION * g_time * g_time;
// Set the Y-coordinate of the ball sprite to

// the distance.

y = g_distance;

// Increment time.

g_time++;

1

// Else, set the Y-coordinate of the ball sprite at
// the bottom of the screen.
else

{
y = SCREEN_HEIGHT - agk::GetSpriteHeight(BALL_SPRITE);

}

// Update the Y-coordinate of the ball sprite.
agk::SetSpriteY(BALL_SPRITE, y);

// Refresh the screen.
agk::Sync();

}

// Called when the app ends
void app::End (void)

{
}

FreeFall.cpp and
ball.png
in the gDrive

13.5 Abstract Classes and Pure virtual Functions

When we think of a class as a type, we assume that programs will create objects of that
type. However, there are cases in which it’s useful to define classes from which you never
intend to instantiate any objects. Such classes are called abstract classes. Because these classes
normally are used as base classes in inheritance hierarchies, we refer to them as abstract
base classes. These classes cannot be used to instantiate objects, because, as we’ll soon see,
abstract classes are incomplete—derived classes must define the “missing pieces” before
objects of these classes can be instantiated. We build programs with abstract classes in
Section 13.6.

An abstract class provides a base class from which other classes can inherit. Classes that
can be used to instantiate objects are called concrete classes. Such classes define or inherit
implementations for every member function they declare. We could have an abstract base
class TwoDimensionalShape and derive such concrete classes as Square, Circle and Tri-
angle. We could also have an abstract base class ThreeDimensionalShape and derive such
concrete classes as Cube, Sphere and Cylinder. Abstract base classes are zoo generic to define
real objects; we need to be more specific before we can think of instantiating objects. For
example, if someone tells you to “draw the two-dimensional shape,” what shape would you
draw? Concrete classes provide the specifics that make it reasonable to instantiate objects.

An inheritance hierarchy does not need to contain any abstract classes, but many
object-oriented systems have class hierarchies headed by abstract base classes. In some
cases, abstract classes constitute the top few levels of the hierarchy. A good example of this
is the shape hierarchy in Fig. 12.3, which begins with abstract base class Shape. On the

Pure Virtual Functions
A class is made abstract by declaring one or more of its virtual functions to be “pure.” A
pure virtual function is specified by placing “= 0” in its declaration, as in

virtual void draw() const = 0; // pure virtual function

The “= 0” is a pure specifier. Pure virtual functions do 7oz provide implementations. Ev-
ery concrete derived class must override all base-class pure virtual functions with concrete
implementations of those functions. The difference between a virtual function and a
pure virtual function is that a virtual function has an implementation and gives the de-
rived class the option of overriding the function; by contrast, a pure virtual function does
not provide an implementation and requires the derived class to override the function for
that derived class to be concrete; otherwise the derived class remains abstract.

Pure virtual functions are used when it does zor make sense for the base class to have
an implementation of a function, but you want all concrete derived classes to implement
the function. Returning to our earlier example of space objects, it does not make sense for
the base class SpaceObject to have an implementation for function draw (as there is no
way to draw a generic space object without having more information about what type of
space object is being drawn). An example of a function that would be defined as virtual
(and not pure virtual) would be one that returns a name for the object. We can name a
generic SpaceObject (for instance, as "space object"), so a default implementation for
this function can be provided, and the function does not need to be pure virtual. The
function is still declared virtual, however, because it’s expected that derived classes will
override this function to provide more specific names for the derived-class objects.

52 // print Employee's information (virtual, but not pure virtual)
53 void Employee::print() const

54
55 cout << getFirstName() << << getLastName()
56 << << getSocialSecurityNumber();

57 } // end function print

Fig. 13.10 | Employee class implementation file. (Part 2 of 2.)

The virtual function print (Fig. 13.10, lines 53-57) provides an implementation
that will be overridden in each of the derived classes. Each of these functions will, however,
use the abstract class’s version of print to print information common to all classes in the
Employee hierarchy.

SalariedEmployee Class Member-Function Definitions

Figure 13.12 contains the member-function implementations for SalariedEmployee.
The class’s constructor passes the first name, last name and social security number to the
Employee constructor (line 10) to initialize the private data members that are inherited
from the base class, but not directly accessible in the derived class. Function earnings
(lines 32-35) overrides pure virtual function earnings in Employee to provide a concrete
implementation that returns the SalariedEmployee’s weekly salary. If we did not imple-
ment earnings, class SalariedEmployee would be an abstract class, and any attempt to
instantiate an object of the class would result in a compilation error (and, of course, we
want SalariedEmployee here to be a concrete class). In class SalariedEmployee’s header,
we declared member functions earnings and print as virtual (lines 18-19 of
Fig. 13.11)—actually, placing the virtual keyword before these member functions is 7e-
dundant. We defined them as virtual in base class Employee, so they remain virtual
functions throughout the class hierarchy. Explicitly declaring such functions virtual at
every level of the hierarchy can promote program clarity. Not declaring earnings as pure
virtual signals our intent to provide an implementation in this concrete class.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#include "Employee.h"

#include "SalariedEmployee.h"

#include "CommissionEmployee.h"
#include "BasePlusCommissionEmployee.h"
using namespace std;

void virtualViaPointer(const Employee * const); // prototype
void virtualViaReference(const Employee &); // prototype

int main(Q)

{
// set floating-point output formatting
cout << fixed << setprecision(2);

// create derived-class objects
SalariedEmployee salariedEmployee(
"John", "Smith", "111-11-1111", 800);
CommissionEmployee commissionEmpTloyee(
"Sue", "Jones", '"333-33-3333", 10000, .06);
BasePTusCommissionEmpTloyee basePlusCommissionEmployee(
"Bob", "Lewis', "444-44-4444", 5000, .04, 300);

cout << "Employees processed individually using static binding:\n\n";

// output each Employee’s information and earnings using static binding
salariedEmpTloyee.print();
cout << "\nearned $" << salariedEmployee.earnings() << "\n\n";
commissionEmpTloyee.print();
cout << "\nearned $" << commissionEmployee.earnings() << "\n\n";
basePTusCommissionEmpTloyee.print();
cout << "\nearned $" << basePlusCommissionEmployee.earnings()

<< "\n\n";

// create vector of three base-class pointers

o

vector < Employee * > employees(2);

// initialize vector with Employees
employees[0] = &salariedEmployee;
employees[1] = &commissionEmployee;
employees[2] &basePTusCommissionEmployee;

cout << "Employees processed polymorphically via dynamic binding:\n\n";

// call virtualViaPointer to print each Employee's information
// and earnings using dynamic binding
cout << "Virtual function calls made off base-class pointers:\n\n";

for (size_t i = 0; i < employees.size(); ++i)
virtualViaPointer(employees[i]);

// call virtualViaReference to print each Employee's information
// and earnings using dynamic binding
cout << "Virtual function calls made off base-class references:\n\n";

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

for (size t i = 0; i < employees.size(); ++i)

virtualViaReference(*employees[i]); // note dereferencing

} // end main

// call Employee virtual functions print and earnings off
// base-class pointer using dynamic binding
void virtualViaPointer(const Employee *
{

baseClassPtr->print(Q);

cout << << baseClassPtr->earnings() <<
} // end function virtualViaPointer

// call Employee virtual functions print and earnings off
// base-class reference using dynamic binding
void virtualViaReference(const Employee &baseClassRef)
{

baseClassRef.print(Q);

cout << << baseClassRef.earnings() <<
} // end function virtualViaReference

a

const baseClassPtr)

o]

EmpTloyees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:
Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

